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Reynolds stress under a change of frame of reference
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In this paper, we study the characteristics of the Reynolds stress under a change of frame, as defined by the
Euclidean group of transformation. We show that being subject to the dynamical processes induced from the
mean Navier-Stokes equations, the invariance group of the fluctuating velocity and the Reynolds stress is no
longer the Euclidean group of transformation, which is merely a kinematical aspect, but reduces to the ex-
tended Galilean group of transformation. As a consequence, in contrast to developing the constitutive equations
for the Cauchy stress in continuum mechanics, wherein the principle of material frame-indifference is a
guiding principle, the frame-dependent kinematical quantities, e.g., the mean spin tensor, may be allowed to
play an effective role as the constitutive variable in turbulence modeling.
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I. INTRODUCTION

In modern continuum mechanics, there are a few fun
mental principles that apply to all bodies and motion
Among them, the principle of material frame-indifference
a guiding principle for constitutive equations, which expre
the relations between the stress and the motion of a body
thereby represent a variety of materials. The principle of m
terial frame-indifference put forth by Noll@1# consists of two
fundamental postulates. The first one states that the cons
tive functional for the Cauchy stress in a continuous medi
is form-invariant, i.e., it takes the same form, be it in
inertial frame or in a noninertial frame; and the second p
tulate asserts that the Cauchy stress is frame-indifferent,
independent of the observers. In the community of tur
lence research, the validity of this fundamental principle
continuum mechanics applied to turbulence modeling
long been an interesting but somewhat controversial to
~see Ref.@2#!. Lumley @3# argued that the principle of mate
rial frame-indifference is not satisfied in turbulent flow
consequently it must be discarded. In fact, he considere
steady homogeneous pure plane strain in a steadily rota
framework and showed that the effect of rigid rotation on
Reynolds stress is serious.

In this paper, we shall study the characteristics of
fluctuating velocity under a change of frame from the p
spectives of both kinematics and dynamics. We show
although kinematically the fluctuating velocity is fram
indifferent, being constrained by the dynamical proces
stemming from taking the ensemble average on the Nav
Stokes equations, the invariance group of the fluctuating
locity is no longer the Euclidean group of transformation, b
reduces to the extended Galilean group of transformat
Consequently, the Reynolds stress is not frame-indiffer
i.e., not invariant relative to the Euclidean group of transf
mation, but is merely invariant with respect to the extend
Galilean group of transformation, a proper subgroup of
former. This gives not only a rigorous proof of the viewpoi
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of Lumley @3#, namely that the Reynolds stress is not fram
indifferent, but it also demarks precisely the invarian
group to which the Reynolds stresses belong. Furthermor
is shown that two important quantities of turbulent flows
the turbulent kinetic energyK and the turbulent dissipation
ratee—are also invariant with respect to the extended G
ilean group of transformation, but are not frame-indiffere
in the sense of Noll@1#.

II. CHARACTERISTICS OF THE REYNOLDS STRESS
UNDER A CHANGE OF FRAME

In this paper, we consider an incompressible Navi
Stokes fluid with constant mass density% and viscositym.
The continuity equation and the linear momentum equat
read

div v50, ~1!

% v̇5div T1%B, ~2!

where a dot denotes the material time derivatived/dt, T5
2p112mD, p is the pressure,1 is the unit tensor, 2D
5gradv1(gradv)T, andB is the body force density.

Taking an ensemble average on the above equations g

div v̄50, ~3!

%
D v̄

Dt
5div~ T̄1t!1%B̄, ~4!

where an overbar represents the ensemble average,D/Dt
denotes the material time derivative associated with
mean velocity field v̄, T̄52 p̄112mD̄, 2D̄5gradv̄
1(gradv̄)T, B̄ is the mean body force density, andtª
2%v8^ v8̄ is the Reynolds stress whereinv8 is the fluctuat-
ing velocity, which gives rise to the so-called closure pro
lem of turbulence modeling.

In the following, we shall study the kinematical and th
dynamical properties of the Reynolds stress under a cha
of frame of reference, which means physically a change
observer.
©2001 The American Physical Society05-1
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A. Kinematic characteristic of the Reynolds stress

Let us first consider a change of frame of reference~see
Ref. @4#!, from an inertial framer:(x,t) to a noninertial
framer* :(x* ,t* ), which is defined by the Euclidean grou
of transformation,

x* ~ t* !5Q~ t !x1b~ t !, ~5!

where Q(t) is an orthogonal tensor, Q(t)Q(t)T

5Q(t)TQ(t)51, b(t) is an arbitrary vector of time, andt*
5t1t0, wheret0 is a constant.

It is well known that the velocity fieldv(x,t) is not frame-
indifferent, since under a change of frame

v* ~x* ,t* !5Q~ t !v~x,t !1Q̇~ t !x1ḃ~ t !. ~6!

Taking an ensemble average on Eq.~6!, we get

v̄* ~x* ,t* !5Q~ t !v̄~x,t !1Q̇~ t !x1ḃ~ t !. ~7!

Subtracting Eq.~7! from Eq. ~6! yields

v* 85Q~ t !v8. ~8!

This shows that the fluctuating velocityv8 is frame-
indifferent. By Eq.~8!, it is straightforward to show that th
Reynolds stresstª2%v8^ v8 is frame-indifferent as well,
i.e.,

t* 5Q~ t !tQ~ t !T. ~9!

This kinematical property of the Reynolds stress was sho
by Speziale@5#.

Remark 1. It is worthwhile to compare the fluctuatin
velocity v8 and the Reynolds stress tensortª2%v8^ v8 in
turbulence with the peculiar velocitycªv2 v̄ and the pres-
sure tensorPª%c^ c in the kinetic theory of gases~see Ref.
@6#!, and note that in fact they bear the same forms. In
kinetic theory of gases,2P is interpreted as the Cauch
stress tensor. However, there exists an obvious differe
between the Cauchy stress and the Reynolds stress; fo
stance, on a solid boundary, the Reynolds stress is alw
zero due to the no-slip boundary condition of velocity, wh
even in a static state of flow the Cauchy stress is not so
simply reduces to a static pressure.

Now in view of Eqs.~8! and ~9!, it is clear that under a
change of frame, the fluctuating velocity and the Reyno
stress are frame-indifferent, being a direct consequenc
kinematics, and their invariance group is the Euclidean gr
of transformation, namely,

x* ~ t* !5Q~ t !x1b~ t !. ~10!

Notwithstanding the kinematical properties as given
Eqs.~8! and ~9!, we shall show that, due to being subject
to the dynamical processes, the invariance group of the fl
tuating velocity and thereby the Reynolds stress is not
Euclidean group of transformation~5!—a direct consequenc
of kinematics as seen—but is merely a proper subgroup
the Euclidean group of transformation.
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B. Invariance group of the Reynolds stress subject to the
dynamical process

It is generally accepted that turbulence is a continu
phenomenon, a feature of the flow itself rather than a ma
rial property of the fluid under consideration, such as
shear viscositym. Moreover, it is believed that the turbulen
flows of a Newtonian fluid can be described by the Navi
Stokes equations, within the framework of continuum m
chanics. In fact, for real turbulent flows, the evolution equ
tion of the fluctuating velocity, which stems from th
averaged Navier-Stokes equations, must be satisfied.
implies that in reality, not all fluctuating velocitiesv8 which
satisfy Eq.~8!, a property directly derived from kinematics
i.e.,

v* 85Q~ t !v8, ~11!

are admissible in conformity with dynamics. The fluctuati
velocity v8 must satisfy its own evolution equation, i.e., it
subjected to the corresponding dynamical process that is
duced adscititiously by taking the ensemble average on
Navier-Stokes equations. And this, as we shall see later,
poses a severe restriction on the invariance group of the fl
tuating velocity under a change of frame and the invaria
group of the Reynolds stress as well.

Now consider a change of frame from an inertial fram
r:(x,t) to a noninertial framer* :(x* ,t* ). We have from
Eq. ~2! that in r,

%ar5divT1%B, ar5 ẍ; ~12!

and inr* it reads

%* ar*5div T* 1%* B* , ~13!

where T* 5Q(t)TQ(t)T52p* 1* 12m* D* , m* 5m,
B* 5Q(t)B, and

ar*5
dv*

dt*
22A~v* 2ḃ!2b̈~ t !2~Ȧ2A2!@x* 2b~ t !#,

~14!

whereAªQ̇(t)Q(t)T.
Equation~14! can be rewritten as

dv*

dt*
5

1

%*
divT* 1B* 12A~v* 2ḃ!1b̈~ t !

1~Ȧ2A2!@x* 2b~ t !#. ~15!

Let F* 5B* 12A(v* 2ḃ)1b̈(t)1(Ȧ2A2)@x* 2b(t)#,
which is called the apparent body force density~see Refs.
@7,8#!. Then Eq.~15! simply reads

dv*

dt*
5

1

%*
div T* 1F* , ~16!

where the apparent body force densityF* is not frame-
indifferent. That is, under a change of frame
5-2
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F* 5B* 12A~v* 2ḃ!1b̈~ t !1~Ȧ2A2!@x* 2b~ t !#

ÞQ~ t !FQ~ t !T, ~17!

whereF5B in an inertial framer.
In an inertial frame, Eq.~16! becomes

dv

dt
5

1

%
divT1F. ~18!

Now taking an ensemble average on Eq.~16!, we have

dv*

dt*
5

1

%*
divT* 1F* . ~19!

Subtraction of Eq.~19! from Eq. ~16! gives the evolution
equation of the fluctuating velocityv* 8 in a noninertial frame
r* , noting thatF* 85B* 812Av* 8,

Dv* 8

Dt*
1L *̄ v* 85

1

%*
divT* 81F* 81G*

5
1

%*
div T* 81B* 812Av* 81G* ,

~20!

where L* 5gradv̄* , T* 852p* 81* 12m* D* 8, 2D* 8
5gradv* 81(gradv* 8)T, and G* 5div(v* 8^ v* 82v* 8
^ v* 8).

Note that in an inertial frame the apparent body for
density fluctuationF* 8 becomesF85B8. The evolution
equation of the fluctuating velocityv8 in r reads

Dv8

Dt
1L̄v85

1

%
divT81F81G

5
1

%
divT81B81G, ~21!

where L̄5gradv̄, T852p8112mD8, 2D85gradv8
1(gradv8)T, andG5div(v8^ v82v8^ v8).

Comparing Eqs.~20! and~21!, we know immediately that
the evolution equation of the fluctuating velocityv8 is not
frame-indifferent, because of the occurrence ofA
ªQ̇(t)Q(t)T52AT, which is the spin of the noninertia
frame r* with respect to the inertial framer. This spin, as
seen in Eq.~20!, affects the evolution of the fluctuating ve
locity v8.

Let S be defined as

Sª

Dv* 8

Dt*
1L̄* v* 82

1

%*
div T* 82F* 82G* 50. ~22!

Then S ^ v* 8̄1v* 8^ S
¯

results in the Reynolds stress tran
port equation in a noninertial framer* ,
05630
Dt*

Dt*
1L *̄ t* 1t* L *̄ T5

1

%*
$~divT* 8! ^ v* 81v* 8^ divT* 8%

2divv* 8^ v* 8^ v* 81B* 8^ v* 8

1v* 8^ B* 812At* 12t* AT. ~23!

And in an inertial framer, Eq. ~23! becomes

Dt

Dt
1L̄t1tL̄T5

1

%
$~divT8! ^ v81v8^ divT8%

2divv8^ v8^ v81B8^ v81v8^ B8.

~24!

From Eqs.~23! and~24!, it is clear that like the evolution
equation of the fluctuating velocityv* 8, the Reynolds stress
transport equation isnot frame-indifferenteither, due to the
same reason, namely the occurrence of the spinA
5Q̇(t)Q(t)T under a change of frame. The same is true
any higher-order moment equations constructed from
evolution equation of the fluctuating velocityv* 8.

Now let us study the invariance group of the fluctuati
velocity v8 under a change of frame, being subjected to
dynamical processes. From Eqs.~20! and~21!, we know that
under a change of frame fromr:(x,t) to r* :(x* ,t* ), the
evolution equation ofv8,

Dv8

Dt
1L̄v85

1

%
divT81B81G, ~25!

becomes

Dv* 8

Dt*
1L *̄ v* 822Av* 85

1

%*
divT* 81B* 81G* . ~26!

Also, from Eq. ~8!, we know that under a change o
frame, the kinematical property of the fluctuating velocityv8
reads

v* 85Q~ t !v8. ~27!

Now applyQ(t) to Eq. ~25! on both sides, making use o
Eq. ~27! and noting thatT* 85Q(t)T8, %* 5%, and B* 8

5Q(t)B8. It follows that

Q~ t !S Dv8

Dt
1L̄v8D5

1

%*
divT* 81B* 81G* . ~28!

A comparison of Eq.~28! with Eq. ~26! then yields

Dv* 8

Dt*
1L* v* 822Av* 85Q~ t !S Dv8

Dt
1L̄v8D . ~29!

This shows that the evolution equation ofv8 is invariant

if and only if A5Q̇(t)Q(t)T50, that is,Q(t)5Q0, where
Q0 is an arbitrary constant orthogonal tensor. In other wor
we have shown that, being subject to the dynamical p
5-3
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YU-NING HUANG AND FRANZ DURST PHYSICAL REVIEW E63 056305
cesses, the invariance group of the fluctuating velocityv8 is
not the Euclidean group of transformation as defined by
~10!, but reduces to its proper subgroup as follows:

x!5Q0x1b~ t !, ~30!

which may be called the extended Galilean group of tra
formation, noting that whenb(t)5V0t, whereV0 is a con-
stant velocity, the Galilean group of transformation is o
tained. Therefore, we have the following.

Theorem. Being subject to the evolution Eq.~25!, a dy-
namical process induced by taking the ensemble averag
the Navier-Stokes equations, the invariance group of
fluctuating velocityv8 is the extended Galilean group o
transformation, a proper subgroup of the Euclidean group
transformation.

Consequently, it is a simple matter to show that the R
nolds stress is also extended Galilean invariant, but
frame-indifferent~Euclidean invariant! in the sense of Trues
dell and Noll @4#. That is, we have

t!5Q0tQ0
T ~31!

under the extended Galilean group of transformation~30!.
Hence, we have the following.

Corollary 1. The Reynolds stresst is not frame-
indifferent under a change of frame, as defined by the
clidean group of transformation, but invariant with respect
the extended Galilean group of transformation.

In addition, we have the following result concerning tw
important quantities in the theory of turbulence, the turbul
kinetic energy and the turbulent dissipation rate.

Corollary 2. The turbulent kinetic energyKª

1
2 %v8•v8

and the turbulent dissipation rateeª2mD8•D8, whereD8
5 1

2 @gradv81(gradv8)T# are not frame-indifferent but invari
ant with respect to the extended Galilean group of trans
mation.

Proof. The proof ofK is obvious by taking the trace of th
Reynolds stress tensor. From the preceding theorem,
know gradv8 is not frame-indifferent but invariant with re
spect to the extended Galilean group of transformati
There follows readily the proof ofe based on its definition
Q.E.D.

Since by the theorem the Reynolds stress is not fra
indifferent under a change of frame, but invariant relative
the extended Galilean group of transformation, it follows i
mediately that in contrast to developing the constituti
equations for the Cauchy stress in continuum mechanics
frame-dependent kinematical quantities, e.g., the mean
tensor W̄5 1

2 @gradv̄2(gradv̄)T#, which is not frame-
indifferent, may be allowed to play a role as the constitut
variable in turbulence modeling.

Remark 2. In the constitutive theory of continuum me
chanics, the spin tensorW5 1

2 @gradv2(gradv)T# is excluded
from being a constitutive argument of the constitutive fun
tional for the Cauchy stress, since it is not frame-indiffere
Under a change of frame, as defined by the Euclidean gr
of transformation,
05630
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W* 5Q~ t !W1A. ~32!

However, the spin tensorW is invariant under the extende
Galilean group of transformation,x!5Q0x1b(t), namely

W!5Q0W. ~33!

And of course, so is the mean spin tensorW̄. Therefore, the
above theorem and its corollaries provide the rationale
the justification of the constitutive assumption that the me
spin tensorW̄ should be included as a constitutive argume
in developing closure models for turbulence.

Now let us review briefly some constitutive equations f
fluids developed in history. First, we mention a nonline
constitutive equation for fluid propsed by Stokes@9#, which
for the Cauchy stressT takes the form

T52p11F~D!, ~34!

whereD is the stretching tensor and whereF(0)50. Assum-
ing the fluid to be isotropic, for the case whenF is linear, he
worked out a linear constitutive equation as follows:

T52p11l~ tr D!112mD. ~35!

This is now called the Navier-Stokes fluid~see Ref.@10#!,
and the resulting dynamical equations are called the Nav
Stokes equations, which are assumed to hold true even w
the fluid is in turbulence.

In an attempt to generalize the hypothesis given
Stokes, Boussinesq@11# replaced Eq.~34! by an apparently
more general constitutive equation, which reads

T52p11F~D,W!, ~36!

whereW is the spin tensor and whereF(0,W)50.
However, Noll@12# showed that the principle of materia

frame-indifference reduces Boussinesq’s@11# constitutive
equation ~36! to Eq. ~34! given by Stokes@9#, since the
frame-dependent spin tensorW has to be dropped out as
constitutive argument, and the constitutive functionalF
must be isotropic. Therefore, in view of the constituti
theory of continuum mechanics, in fact, no generalization
all was made by Boussinesq@11#.

Yet, as we have remarked, in the constitutive theory
turbulence closure modeling, since the mean spin tensoW̄
is invariant relative to the extended Galilean group of tra
formation, it is allowed to serve as a constitutive argumen
the constitutive equations for the Reynolds stress. Theref
in contrast to the case of continuum mechanics, the cons
tive equation proposed by Boussinesq@11# indeed would be-
come a more general model for the Reynolds stress t
Stokes’ model@9#, if the Cauchy stressT were replaced by
the Reynolds stresst in both Eqs.~34! and ~36!, if p were
replaced by2

3 K, and if the stretching tensorD and the spin
tensor W were replaced by their means corresponding
Namely, it follows that the model for the Reynolds stre
corresponding to Stokes’ model reads

t52 2
3 K11F~D̄!, ~37!
5-4
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whereF(0)50, while the model for the Reynolds stres
corresponding to Boussinesq’s model reads

t52 2
3 K11F~D̄,W̄!, ~38!

whereF(0,0)50.
Finally, it is worth noting the difference between mode

ing the Cauchy stress in continuous media and modeling
Reynolds stress in turbulence. In continuum mechanics,
Cauchy stress is assumed to be frame-indifferent, whe
the Reynolds stress is not frame-indifferent, as we h
shown. It is invariant only relative to the extended Galile
group of transformation, as seen in Eq.~31!. As a conse-
quence, the frame-dependent kinematical quantities suc
W are excluded from being the constitutive variables for
Cauchy stress, but are allowed to play an effective role
modeling the Reynolds stress. This significant difference
it stands, may be regarded as an expression of the fact
the Cauchy stress in fact represents the intrinsic propertie
the materials~see Ref.@4#!, which are independent of th
observers; however, by nature, the Reynolds stress, de
f
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its name, depicts merely the complex phenomena of the
bulent flows, which may depend on the observers from
inertial frame of reference to a noninertial one.

III. CONCLUDING REMARKS

We have shown in this paper that being subjected to
dynamical processes induced by taking the ensemble ave
on the Navier-Stokes equations, the invariance group of
velocity fluctuation, the Reynolds stress, the turbulent kine
energy, and the turbulent dissipation rate is the exten
Galilean group of transformation, but not the Euclide
group of transformation, which is simply a kinematical pro
erty. In other words, these quantities are frame-depend
not frame-indifferent in the sense of Truesdell and Noll@4#,
but invariant relative to the Galilean group of transformatio
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