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Reynolds stress under a change of frame of reference
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In this paper, we study the characteristics of the Reynolds stress under a change of frame, as defined by the
Euclidean group of transformation. We show that being subject to the dynamical processes induced from the
mean Navier-Stokes equations, the invariance group of the fluctuating velocity and the Reynolds stress is no
longer the Euclidean group of transformation, which is merely a kinematical aspect, but reduces to the ex-
tended Galilean group of transformation. As a consequence, in contrast to developing the constitutive equations
for the Cauchy stress in continuum mechanics, wherein the principle of material frame-indifference is a
guiding principle, the frame-dependent kinematical quantities, e.g., the mean spin tensor, may be allowed to
play an effective role as the constitutive variable in turbulence modeling.
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[. INTRODUCTION of Lumley [3], namely that the Reynolds stress is not frame-
indifferent, but it also demarks precisely the invariance
In modern continuum mechanics, there are a few fundagroup to which the Reynolds stresses belong. Furthermore, it

mental principles that apply to all bodies and motions.is shown that two important quantities of turbulent flows—
Among them, the principle of material frame-indifference isthe turbulent kinetic energi( and the turbulent dissipation
a guiding principle for constitutive equations, which express'ate e—are also invariant with respect to the extended Gal-
the relations between the stress and the motion of a body arigan group of transformation, but are not frame-indifferent
thereby represent a variety of materials. The principle of main the sense of Nol[1].
terial frame-indifference put forth by NdllL] consists of two
fundamental postulates. The first one states that the constitu- 1l. CHARACTERISTICS OF THE REYNOLDS STRESS
tive functional for the Cauchy stress in a continuous medium UNDER A CHANGE OF FRAME
is form-invariant, i.e., it takes the same form, be it in an

inertial frame or in a noninertial frame; and the second pos- In_this paper, we consider an |n§:ompres_,3|ble. Navier-
Stokes fluid with constant mass densityand viscosityg.

tulate asserts that the Cauchy stress is frame-indifferent, i'e'l‘h tinuit i d the I i fi
independent of the observers. In the community of turbu- € continuity equation and the finear momentum equation

lence research, the validity of this fundamental principle in"®2
continuum mechanics applied to turbulence modeling has divv=0, 1)
long been an interesting but somewhat controversial topic
(see Ref[2]). Lumley[3] argued that the principle of mate-
rial frame-indifference is not satisfied in turbulent flows,

consequently it must be discarded. In fact, he considered ghere a dot denotes the material time derivativdt, T=
steady homogeneous pure plane strain in a steadily rotating 51+ 2,D, p is the pressurel is the unit tensor,
framework and showed that the effect of rigid rotation on the— grady+ (gradv) T, andB is the body force density.
Reynolds stress is serious.

In this paper, we shall study the characteristics of the
fluctuating velocity under a change of frame from the per- divv=0, (3)
spectives of both kinematics and dynamics. We show that
although kinematically the fluctuating velocity is frame- Dv - o
indifferent, being constrained by the dynamical processes QD_t:div(T+ )+ 0B, (4)
stemming from taking the ensemble average on the Navier-

Stqke_s equations, the invqriance group of the fluctuqting Veihere an overbar represents the ensemble aveBuft
locity is no longer the Euclldea'n group of transformation, l.)Utdenotes the material time derivative associated with the
reduces to the extended Galilean group of transformation. . = = = — = —
Consequently, the Reynolds stress is not frame-indifferent'a" leloclty field v, T=-pl+2uD, 2D=gradv
i.e., not invariant relative to the Euclidean group of transfor-+ (gradv)™, B is the mean body force density, and=
mation, but is merely invariant with respect to the extended-ov’'®V’ is the Reynolds stress wherein is the fluctuat-
Galilean group of transformation, a proper subgroup of theng velocity, which gives rise to the so-called closure prob-
former. This gives not only a rigorous proof of the viewpoint lem of turbulence modeling.
In the following, we shall study the kinematical and the
dynamical properties of the Reynolds stress under a change
*Email address: huang@Istm.uni-erlangen.de of frame of reference, which means physically a change of
"Email address: durst@Istm.uni-erlangen.de observer.

ov=divT+0B, 2

Taking an ensemble average on the above equations gives
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A. Kinematic characteristic of the Reynolds stress B. Invariance group of the Reynolds stress subject to the

Let us first consider a change of frame of refere(sme

dynamical process

Ref. [4]), from an inertial frame$:(x,t) to a noninertial It is generally accepted that turbulence is a continuum

frame$*: (x*,t*),

which is defined by the Euclidean group phenomenon, a feature of the flow itself rather than a mate-

of transformation, rial property of the fluid under consideration, such as its

where Q(t) is

=Q(t)"Q(t)=1, b(t) is an arbitrary vector of time, arid
=t+1tp, wherety is a constant.
It is well known that the velocity field(x,t) is not frame-

indifferent, since

VE (X5 t4) = Q(t)V(x,t) + Q(t)x+b(t). (6)

Taking an ensemble average on Eg), we get

shear viscosity.. Moreover, it is believed that the turbulent
X* (%)= Q(t)x+b(t), (5 flows of a Newtonian fluid can be described by the Navier-
Stokes equations, within the framework of continuum me-
chanics. In fact, for real turbulent flows, the evolution equa-
tion of the fluctuating velocity, which stems from the
averaged Navier-Stokes equations, must be satisfied. This
implies that in reality, not all fluctuating velocitias which
satisfy Eq.(8), a property directly derived from kinematics,
ie.,

an orthogonal tensor, Q(t)Q(t)"

under a change of frame

v =Q(t)Vv', (11)

are admissible in conformity with dynamics. The fluctuating

VF (X, 1) = Q(V(X,1) + Q(t)x+b(t). (7)  velocity v’ must satisfy its own evolution equation, i.e., it is

Subtracting Eq(7) from Eq. (6) yields

This shows that the fluctuating velocity’ is frame-
indifferent. By EQ.(8), it is straightforward to show that the

Reynolds stress:

ie.,

This kinematical property of the Reynolds stress was shown

by Speziald5].

subjected to the corresponding dynamical process that is in-
duced adscititiously by taking the ensemble average on the
) Navier-Stokes equations. And this, as we shall see later, im-
poses a severe restriction on the invariance group of the fluc-
tuating velocity under a change of frame and the invariance
group of the Reynolds stress as well.
Now consider a change of frame from an inertial frame
$:(x,t) to a noninertial framef*:(x*,t*). We have from
Eqg. (2) thatin§,

v '=Q(t)v'.

=—poVv'®V’ is frame-indifferent as well,

* _ T
™ =Q(t) Q). ©) 0a;—divT+ 0B, a=X; (12

and in$* it reads

Rgmark 11t is worthwhile to compare the ﬂuctuqting 0* ag=divT* + *B*, (13)
velocity v/ and the Reynolds stress tensos —ov' @V’ in

turbulence with the peculiar velocity=v—v and the pres- where T*=Q(t)TQ(t)'=—p*1*+2u*D*, u*=u,
sure tensoP:=gc® c in the kinetic theory of gasdsee Ref. B* =Q(t)B, and

[6]), and note that in fact they bear the same forms. In the
kinetic theory of gases;P is interpreted as the Cauchy B N ) S
stress tensor. However, there exists an obvious difference %*= dt* ~2A(V* =b)=b(t) = (A=AT)[X* —b(1)],
between the Cauchy stress and the Reynolds stress; for in- (14)
stance, on a solid boundary, the Reynolds stress is always

zero due to the no-slip boundary condition of velocity, while\yhere A :=Q(t)Q(t) .

even in a static state of flow the Cauchy stress is not so but gquation(14) can be rewritten as

simply reduces to a static pressure.

*

Now in view of Egs.(8) and(9), it is clear that under a dv* L
change of frame, the fluctuating velocity and the Reynolds o= —*divT* +B* +2A(v* —b)+Db(t)
stress are frame-indifferent, being a direct consequence of t e

kinematics, and their invariance group is the Euclidean group
of transformation, namely,

X* (1) = Q(t)x+ b(t). (10 Let F*=B*+2A(v* —b)+Db(t)+ (A—A?)[x* —b(1)],
which is called the apparent body force dengige Refs.
Notwithstanding the kinematical properties as given in[7.8]). Then Eq.(15) simply reads

Egs.(8) and(9), we shall show that, due to being subjected
to the dynamical processes, the invariance group of the fluc- dv* _ idiv T* L E* (16)
tuating velocity and thereby the Reynolds stress is not the der o* '
Euclidean group of transformatidf)—a direct consequence
of kinematics as seen—but is merely a proper subgroup ofvhere the apparent body force densk§ is not frame-
the Euclidean group of transformation. indifferent. That is, under a change of frame

+(A—A)[X* —b(t)]. (15)
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F* =B* + 2A(V* —b) +b(t) + (A—A?)[x* —b(t)]

#Q(HFQ()T, (17)
whereF=B in an inertial frame$.
In an inertial frame, Eq(16) becomes
dv_ 1d' T+F 18
a—a v . ( )

Now taking an ensemble average on Etf), we have

av* 1 @ — —
= —divT* +F*.
dt* Q*

(19

Subtraction of Eq(19) from Eq. (16) gives the evolution
equation of the fluctuating velocity*' in a noninertial frame
$*, noting thatF* '=B* '+ 2Av* ',

’

DV* 4 l . ’ !
+L*vF =—divT* +F* +G*

Dt* o*

1
=—divT*'+B* +2Av*' +G*,

@

(20
where L*=gradv*, T*'=—p*'1*+2,*D*’, 2D*’
=grad/*’+(grad/*’)T, and G*=div(v*' @v* ' —v*’

QV*').

Note that in an inertial frame the apparent body force

density fluctuationF*’ becomesF'=B’. The evolution
equation of the fluctuating velocity’ in 45 reads

Dv’
—+Lv——d|vT’+F +G
Dt 0
1.
IEd|vT’+B’+G, (21)
where L=grad, T'=-p'1+2uD', 2D'=grad/

+(grad/’)T, andG=div(v' @V’ —Vv' ®V').

Comparing Eqgs(20) and(21), we know immediately that

the evolution equation of the fluctuating velocity is not
frame-indifferent because of the occurrence oA

:=Q(t)Q(t)T=—AT, which is the spin of the noninertial

frame $* with respect to the inertial framg. This spin, as

seen in Eq(20), affects the evolution of the fluctuating ve-

locity v'.
Let X be defined as

* !

1
— —divT*’' —F*’
*

0

+L*v* —-G*=0. (22

" Dt*
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Dr*
Dt*

1
FLE 4 L T=—{(diVT* )@ v+ v e divT* )
Y

—divw*' @v*' @v*'+B* @v*’
+Vv¥'@B* +2AT +27AT. (23

And in an inertial framef, Eq. (23) becomes

Dr — — 1 — .
TR TLT=E{(d|vT’)®v’ +Vv' @divT’}

—diw' v ev +B'9v +v @B’.
(24)

From Eqs.(23) and(24), it is clear that like the evolution

equation of the fluctuating velocity* ', the Reynolds stress
transport equation isot frame-indifferentither, due to the
same reason, namely the occurrence of the sAin

=Q(t)Q(t)T under a change of frame. The same is true for

any higher-order moment equations constructed from the

evolution equation of the fluctuating velocity "

Now let us study the invariance group of the fluctuating
velocity v/ under a change of frame, being subjected to the
dynamical processes. From E@80) and(21), we know that
under a change of frame frogh:(x,t) to ¢*:(x*,t*), the
evolution equation of/’,

bV +LV d T'+B'+G, 2
Dt v = o iV (25)
becomes
Dv*’ 1
+L*v* = 2Av* ' =—divT* ' +B* '+ G*. (26)
Dt* Q*

Also, from Eq. (8), we know that under a change of
frame, the kinematical property of the fluctuating veloaity
reads

V¥ =Q(t)V'. (27

Now applyQ(t) to Eq.(25) on both sides, making use of
Eq. (27) and noting thatT* =Q(t)T’, o*=p¢, and B*'
=Q(t)B’. It follows that

DV’ 1
Q(t)(—+Lv =—*divT*’+B*’+G*.
[

(28)

A comparison of Eq(28) with Eq. (26) then yields

!

Dv*’ Dv
FLAVv —2A0 =Q(1) —+Lv

Dt*

(29

This shows that the evolution equation\dfis invariant
if and only if A=Q(t)Q(t)T=0, that is, Q(t)=Q,, where

ThenS®@v* +v*'®3 results in the Reynolds stress trans- Qg is an arbitrary constant orthogonal tensor. In other words,

port equation in a noninertial framg",

we have shown that, being subject to the dynamical pro-
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cesses, the invariance group of the fluctuating velogitys W*=Q(t)W+A. (32
not the Euclidean group of transformation as defined by Eq.
(10), but reduces to its proper Subgroup as follows: However, the spin tensdlV is invariant under the extended

Galilean group of transformation; = Qyx+ b(t), namely

X*=Qox+h(t), (30) W*=QgW. (33

which may be called the extended Galilean group of transa g of course, so is the mean spin ten¥or Therefore, the

formatloF, r_10t|ng thgt I\_/:/helb(t)=vot,f wher?cvo IS a con- b above theorem and its corollaries provide the rationale for
stant velocity, the Galilean group of transtormation Is 0b-y,o justification of the constitutive assumption that the mean

tained. Therefore, we have the following. it W should be included it ;
Theorem Being subject to the evolution ER5), a dy- Spin tensoWV should be Included as a constitutive argumen
an developing closure models for turbulence.

namical process induced by taking the ensemble average ; : S .
P y 9 g Now let us review briefly some constitutive equations for

the Navier-Stokes equations, the invariance group of the . N . . A
. group ?des developed in history. First, we mention a nonlinear

fluctuating velocityv’ is the extended Galilean group of L ) ) .
transformation, a proper subgroup of the Euclidean group o onstitutive equation for fluid propsed by Sto€s, which
or the Cauchy stres§ takes the form

transformation.
Consequently, it is a simple matter to show that the Rey- T=—-pl+F(D) (34
nolds stress is also extended Galilean invariant, but not '
frame-indifferentEuclidean invariantin the sense of Trues- \yhereD is the stretching tensor and whef&0) = 0. Assum-
dell and Noll[4]. That is, we have ing the fluid to be isotropic, for the case whéfis linear, he
worked out a linear constitutive equation as follows:
* T
7 =Qp7Qp (31
T=—pl+A(trD)1+2uD. (35)
under the extended Galilean group of transformatid®).

Hence, we have the following. This is now called the Navier-Stokes flui{dee Ref[10]),

and the resulting dynamical equations are called the Navier-

. d%?rolle}[ry 3 Theh Reynolfd? stressr ('js f.noé E‘)rar;:]e— £ Stokes equations, which are assumed to hold true even when
indifferent under a change of frame, as defined by the Eug, . 4 /i4'is in turbulence.

clidean group of transformation, but invariant with respectto- | | an attempt to generalize the hypothesis given by

thelne)ggg.?ig Ga;"ﬁ:negtrﬁg?oﬂgtr%nsﬁgmﬁtfgﬁcem.n WO Stokes, Boussinedd.1] replaced Eq(34) by an apparently
ton, w v wing resu Ing twi {nore general constitutive equation, which reads

important quantities in the theory of turbulence, the turbulen

kinetic energy and the turbulent dissipation rate. T=—-pl+F(D,W), (36)
Corollary 2. The turbulent kinetic energiK:=3ov’-v’

and the turbulent dissipation rate=2uD’-D’, where D’ whereW is the spin tensor and wherg(0,W)=0.

=3[grad/’ + (grad/’) "] are not frame-indifferent but invari- However, Noll[12] showed that the principle of material
ant with respect to the extended Galilean group of transforframe-indifference reduces Boussines{kl] constitutive
mation. equation (36) to Eqg. (34) given by Stokeq9], since the

Proof. The proof ofK is obvious by taking the trace of the frame-dependent spin tens@f has to be dropped out as a
Reynolds stress tensor. From the preceding theorem, weonstitutive argument, and the constitutive functiorsal
know grad/’ is not frame-indifferent but invariant with re- must be isotropic. Therefore, in view of the constitutive
spect to the extended Galilean group of transformationtheory of continuum mechanics, in fact, no generalization at
There follows readily the proof of based on its definition. all was made by Boussine$d1].

Q.E.D. Yet, as we have remarked, in the constitutive theory of
Since by the theorem the Reynolds stress is not framewrbulence closure modeling, since the mean spin tewsor
indifferent under a change of frame, but invariant relative tojs invariant relative to the extended Galilean group of trans-
the extended Galilean group of transformation, it follows im-formation, it is allowed to serve as a constitutive argument in
mediately that in contrast to developing the constitutitvethe constitutive equations for the Reynolds stress. Therefore,
equations for the Cauchy stress in continuum mechanics, tha contrast to the case of continuum mechanics, the constitu-

frame-dr—:_pendent &nematigal quantities, e.g., the mean spiive equation proposed by Boussing4d] indeed would be-
tensor W= 3[grad/—(grads)"], which is not frame- come a more general model for the Reynolds stress than
indifferent, may be allowed to play a role as the constitutiveStokes’ mode[9], if the Cauchy stres$ were replaced by
variable in turbulence modeling. the Reynolds stress in both Eqgs.(34) and (36), if p were

Remark 2 In the constitutive theory of continuum me- replaced by3K, and if the stretching tensd® and the spin
chanics, the spin tens® = [ grad/— (grads) '] is excluded  tensor W were replaced by their means correspondingly.
from being a constitutive argument of the constitutive func-Namely, it follows that the model for the Reynolds stress
tional for the Cauchy stress, since it is not frame-indifferent.corresponding to Stokes’ model reads
Under a change of frame, as defined by the Euclidean group .
of transformation, r=—2K1+ F(D), (37
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where F(0)=0, while the model for the Reynolds stress its name, depicts merely the complex phenomena of the tur-
corresponding to Boussinesq’'s model reads bulent flows, which may depend on the observers from an
o inertial frame of reference to a noninertial one.
7=—5K1+ F(D,W), (38)
where (0,0)=0. Ill. CONCLUDING REMARKS

Finally, it is worth noting the difference between model-  We have shown in this paper that being subjected to the
ing the Cauchy stress in continuous media and modeling thgynamical processes induced by taking the ensemble average
Reynolds stress in turbulence. In continuum mechanics, thgn the Navier-Stokes equations, the invariance group of the
Cauchy stress is assumed to be frame-indifferent, whereaglocity fluctuation, the Reynolds stress, the turbulent kinetic
the Reynolds stress is not frame-indifferent, as we havenergy, and the turbulent dissipation rate is the extended
shown. It is invariant only relative to the extended GalileanGalilean group of transformation, but not the Euclidean
group of transformation, as seen in E®1). As a conse- group of transformation, which is simply a kinematical prop-
quence, the frame-dependent kinematical quantities such &sty. In other words, these quantities are frame-dependent,
W are excluded from being the constitutive variables for thenot frame-indifferent in the sense of Truesdell and N4l|

Cauchy stress, but are allowed to play an effective role irbut invariant relative to the Galilean group of transformation.
modeling the Reynolds stress. This significant difference, as

it stands, may be regarded as an expression of the fact that
the Cauchy stress in fact represents the intrinsic properties of
the materials(see Ref.[4]), which are independent of the We are grateful to Professor J. L. Lumley for valuable
observers; however, by nature, the Reynolds stress, despidéscussions.
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